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Outline of the presentation

PART 1

Generator feedback control: Mutriku test case

Power take-off system: biradial vs Wells turbine

Mathematical model

Generator feedback control law: computation and sensitivity analysis

PART 2

Model predictive latching control: Spar-buoy OWC test case

Power take-off system: biradial turbine equipped with an HSSV

Changes to mathematical model

A discrete control algorithm based on Pontryagin’s Maximum Principle

A new continuous control method based on the Discontinuous Galerkin
Method

Major conclusions
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PART1 - Mutriku power plant test case
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Hydrodynamic model

Hydrodynamic model developed by Wanan Sheng

High-order method, 2192 variables, 300 frequencies
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Installed Mutriku power take-off

Wells turbine with biplane rotor without guide vanes

Rotor diameter: 0.75 m. Generator rated power: 18.5 kW
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Biradial turbine to be installed at Mutriku within OPERA H2020 Project

Biradial turbine with fixed guide vanes (Kymaner/IST patent WO/2011/102746)

Rotor diameter: 0.50 m. Generator rated power: 30.0 kW

To be installed at Mutriku in mid-April 2017 and in the Oceantec spar-buoy,
deployed at BIMEP site, in Sept. 2017 (OPERA H2020 Project)
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Turbine dimensionless curves

The performance characteristics of a turbine in dimensionless form

Ψ =
p

ρinΩ2 d2

Φ =
ṁturb

ρinΩ d3

Π =
Pturb

ρinΩ3 d5

η =
Π

ΨΦ

d - rotor diameter

For Re > 106 and Ma < 0.3 the dimensionless curves Φ, Π and η are independent
of Re and Ma

⇒ ṁturb (p,Ω, ρin) = ρinΩ d3 Φ(Ψ), Pturb (p,Ω, ρin) = ρinΩ
3 d5 Π(Ψ)
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Mathematical model

OWC motion is modelled as a rigid piston (LOWC � λwaves)

(m2 + A∞22) ẍ2 = −ρwgS2 x2︸ ︷︷ ︸
buoyancy

−R22︸ ︷︷ ︸
radiation

+Fd2︸ ︷︷ ︸
diffraction

−patm S2 p
∗︸ ︷︷ ︸

air chamber

Air chamber pressure (see [1, 2])

ṗ∗ = −γ (p∗ + 1)
V̇c

Vc
− γ (p∗ + 1)(γ−1)/γ ṁturb

ρVc

Turbine/generator set dynamics

I Ω̇∗ = (Tturb − Tgen)Ω
−1
max =

(
ρinΩ

2d5 Π(Ψ) − Tgen

)
Ω−1

max

Dimensionless variables

p∗ =
p − patm

patm
and Ω∗ = Ω/Ωmax

O [x2] ≈ O [p∗] ≈ O [Ω∗] ≈ 1 ⇒ Similar orders of magnitude for errors
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Generator feedback control law

Generator feedback control law

If the turbine operates at the best efficiency point ηmax

Pturb ≈ ρatm d5 Π( Ψ(ηmax) )︸ ︷︷ ︸
const

Ω3 = constΩ3

the generator should follow the turbine in time-average

Feedback control law

Pgen = min
(
aΩb, P rated

gen

)
Tgen = min

(
aΩb−1,

P rated
gen

Ω

)

The control law is clipped at generator rated power
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Generator feedback control law

Constants “a” and “b” are functions of the WEC hydrodynamics and turbine
geometry but not of sea-state

Usually 2.4 < b < 3.6

To compute “a” and “b” we use a constant rotational speed model

Ω̇∗ = 0 ⇒ very large inertia

for the Mutriku wave climate (14 sea states)

Further details can be found in [1, 2]
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Generator feedback control law

Wells turbineBiradial turbine
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Comparison time-averaged turbine output power and rotational speed

Biradial turbine Wells turbine
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PART 2 - Optimal control of the turbine High-Speed Stop Valve (Latching)

rotor

HSSV

The HSSV valve of a biradial turbine with 0.5 m rotor diameter HSSV movie

Latching with the HSSV will be tested at Mutriku, June-July 2017 (OPERA)

HSSV will operate as safety valve in Oceantec MARMOK-A-5, October 2017
(OPERA). Buoy: 5 m diameter, 42 m in length and 80 tonnes weight.
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Latching control and air compressibility

OWCs vs oscillating body WECs

Latching on OWCs not so effective as in the case of an oscillating-body
WECs

air compressibility has a spring effect

closing the HSSV does not stop the relative motion between the OWC
and buoy

Decreases the forces resulting from latching in comparison with solid-body
breaking

the valve surface area subject to the chamber pressure is a small
fraction of the area of the OWC free surface

no impact forces - air compressibility spring effect

Removes the constraint of latching having to coincide with an instant of zero
relative velocity between the floater and the OWC
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Changes to the mathematical model of Mutriku

Spar-buoy OWC - two body system constrained to oscillate in heave

Buoy: (m1 + A∞11) ẍ1 + A∞12 ẍ2 = −ρwgS1 x1 − R11 − R12 + Fd1 +patm S2 p
∗

OWC: A∞21 ẍ1 + (m2 + A∞22) ẍ2 = −ρwgS2 x2︸ ︷︷ ︸
buoyancy

−R21 − R22︸ ︷︷ ︸
radiation

+Fd2︸ ︷︷ ︸
diffraction

−patm S2 p
∗︸ ︷︷ ︸

air chamber

HSSV simulation requires a new definition of Ψ

Ψ̃ = uΨ = u
p∗pat

ρinΩ2 d2

where u ∈ {0,1} is the discrete control (close/open)

System of equations written as a 1st-order ODE

ẋ = f(t,x,u) (1)

x are called the states
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Optimal control and the Pontriagyn Maximum Principle

Optimal control

Maximization of a performance index based on the control u of the HSSV

max

( ∫T
0

L (x,u) dt

)

Example: L (x,u) =
Pturb(t,x,u)

ρatmΩ3
maxd

5

Using the Pontriagyn Maximum Principle (PMP) the optimal problem is
recast as

max

 ∫T
0

L (x, u) dt︸ ︷︷ ︸
performance index

−

∫Tf

0

λT (ẋ − f(t,x,u)) dt︸ ︷︷ ︸
constrained to system dynamics


λ ′s are called adjoint variables
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Solution of the Pontriagyn Maximum Principle

The PMP shows that:

along the optimal control path (x,u) the Hamiltonian function H

H (t,x, u,λ) = λT f (t,x,u) + L (x, u) ,

is maximum for the optimal input u subjected to:

ẋ = f(t,x,u)

x(0) = x0

}
⇒ forward solution

λ̇ = −∇xf(t,x,u)T
λ−∇xL(x, u)T

λ(Tf ) = 0

}
⇒ backward solution

for t ∈ [ 0,Tf ]

non-causal control - Fd (t) required to compute f for t ∈ [ 0,Tf ]

For complete details see the two classical books of Luenberger [5] and
Bryson & Ho [6]
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Receding Horizon control in a real-time framework

2017 Maynooth University Wave Energy Workshop / Control of the PTO system of OWCs: feedback vs model predictive control 20/31



Hardware-in-the-loop tests at Tecnalia test rig

See [3, 4] for further details
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Hardware-in-the-loop tests at Tecnalia test rig
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Hardware-in-the-loop tests at Tecnalia test rig
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Lessons learned from the Tecnalia hardware-in-the-loop tests

To improve stability, all state variables must have the same order of magnitude

The algorithm sometimes opens/closes the HSSV intermittently during short
periods (less than 1.5 seconds)

The discrete nature of the numerical solution of the PMP problem implies a
2nd-order accuracy

A new challenge in the HSSV control

The sub-optimal problem of open/closing the HSSV only at the end of
each (non-infinitesimal) time step, ∆t = 0.1 ∼ 0.2 s

No solution found in the searched bibliography!

We start the quest for a new solution method...
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Discontinuous Galerkin Method

The computational domain is discretized in small time-elements

where

State, adjoint and control variables approximated by a set of Legendre
polynomials, pj (t) such that x =

∑
j pj (t)x̃j in each time element

The numerical solution is continuous within the time elements and
allowed to be discontinuous across element boundaries

Solution of the sub-optimal control problem - compute u that maximizes the
Hamiltonian H in a integral sense

max
u∈ {0,1}

∫ te+1

te

H(t,x, u,λ) dt
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Discontinuous Galerkin Method

In the DG Finite Element Method, the original problem

ẋ − f(t, x, u) = 0

is replaced by a weak formulation∫
Ie

vh

(
dxh
dt

− f

)
︸ ︷︷ ︸
state equations

dt + vh(te) [xh(t
+
e ) − x(t−e )]︸ ︷︷ ︸

weakly enforced BC

= 0

vh is the so-called test function in the FEM framework

Applying an affine transformation from t ∈ Ie to τ ∈ [−1,1]∫ 1

−1

v̂h
dx̂h
dτ

dτ+ v̂h(−1) x̂h(−1+) =
∆t

2

∫ 1

−1

v̂h f̂ dτ+ v̂h(−1) x̂(−1−) (2)

we write (2) as linear system A x̂h = b(t,x,u) in each element
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Discontinuous Galerkin Method

To improve the convergence rate, a regularization term was introduced

L(x,u) =
1

T

∫T
0

(
Pturb(t,x,u)

ρatmΩ3
maxd

5
+ ε (1 − u)2

)
dt
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Discontinuous Galerkin Method
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Major conclusions

Receding horizon optimal latching algorithm can be used to improve the OWC
spar-buoy capture width

Receding horizon time interval between 10 to 24 s

The Discontinuous-Galerkin solves the HSSV open/closing intermittency problem
of the discrete optimal control

Probably the greatest advantage of the OWC technology

Simple control of the available power to PTO system by using a HSSV

HSSV can be used for latching and control of the available power to the
turbine and generator

The proposed Discontinuous-Galerkin method is an efficient alternative to the
well know Pseudo-Spectral Methods

High-order accuracy, mesh and polynomial (h-p) refinement, local nature of
the solution, simple parallelization (real-time applications)

2017 Maynooth University Wave Energy Workshop / Control of the PTO system of OWCs: feedback vs model predictive control 29/31



Acknowledgements

The work was funded by

Portuguese Foundation for Science and Technology (FCT) through IDMEC

LAETA Pest-OE/EME/LA0022

WAVEBUOY project, Wave-powered oceanographic buoy for long term
deployment, PTDC/MAR-TEC/0914/2014

European Union’s Horizon 2020 research and innovation programme under
grant agreement No 654444 (OPERA Project)

The first author was supported by FCT researcher grant No. IF/01457/2014

2017 Maynooth University Wave Energy Workshop / Control of the PTO system of OWCs: feedback vs model predictive control 30/31



References

[1] A. F. O. Falcão, J. C. C. Henriques, Oscillating-water-column wave energy converters and air
turbines: A review, Renewable Energy 85 (2016) 1391 – 1424.

doi:10.1016/j.renene.2015.07.086.

[2] J. C. C. Henriques, J. C. C. Portillo, L. M. C. Gato, R. P. F. Gomes, D. N. Ferreira, A. F. O.
Falcão, Design of oscillating-water-column wave energy converters with an application to
self-powered sensor buoys, Energy 112 (2016) 852 – 867.

doi:10.1016/j.energy.2016.06.054.

[3] J. C. C. Henriques, L. M. C. Gato, A. F. O. Falcão, E. Robles, F.-X. Faÿ, Latching control of a
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