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Outline of the presentation

e PART 1

o Generator feedback control: Mutriku test case
o Power take-off system: biradial vs Wells turbine
o Mathematical model
o Generator feedback control law: computation and sensitivity analysis

o PART 2

o Model predictive latching control: Spar-buoy OWC test case

o Power take-off system: biradial turbine equipped with an HSSV

o Changes to mathematical model

o A discrete control algorithm based on Pontryagin's Maximum Principle

o A new continuous control method based on the Discontinuous Galerkin
Method

@ Major conclusions
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PART1 - Mutriku power plant test case
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Hydrodynamic model
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o Hydrodynamic model developed by Wanan Sheng

o High-order method, 2192 variables, 300 frequencies
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Installed Mutriku power take-off

@ Wells turbine with biplane rotor without guide vanes

o Rotor diameter: 0.75m. Generator rated power: 18.5 kW
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Biradial turbine to be installed at Mutriku within OPERA H2020 Project

o Biradial turbine with fixed guide vanes (Kymaner/IST patent WO /2011/102746)

@ Rotor diameter: 0.50 m. Generator rated power: 30.0 kW

o To be installed at Mutriku in mid-April 2017 and in the Oceantec spar-buoy,
deployed at BIMEP site, in Sept. 2017 (OPERA H2020 Project)
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Turbine dimensionless curves

o The performance characteristics of a turbine in dimensionless form
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o For Re > 10% and Ma < 0.3 the dimensionless curves @, TT and 11 are independent
of Re and Ma
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Mathematical model

@ OWC motion is modelled as a rigid piston (Lowc < Ayaves)

(my + A33) %o = —pugS2 X2 —Rao +Fao —Patm S2 P°
— T O o

buoyancy radiation diffraction  air chamber
o Air chamber pressure (see [1, 2])
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o Turbine/generator set dynamics

19" = Ty — Tgen) Qi = (010 Q2d® TI(Y) — Toen ) Q.2
o Dimensionless variables
o pt =P TP nd QF = Q/Qua

Patm

0o Ol = O[p*l = O[Q*] =1 = Similar orders of magnitude for errors
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Generator feedback control law

o Generator feedback control law

o If the turbine operates at the best efficiency point Myax

Pturb ~ Patm ds n( \y(nmax) ) Q3 = const Q3

const

the generator should follow the turbine in time-average

Feedback control law

[P = min( aQb, prated )

gen

rated

_ q b—1 gen
Tgen =min| 2 O” -, -

o The control law is clipped at generator rated power
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Generator feedback control law

w_n

o Constants “a" and “b" are functions of the WEC hydrodynamics and turbine
geometry but not of sea-state

o Usually 2.4 < b< 3.6

o To compute “a" and "“b" we use a constant rotational speed model

Q*=0 = very large inertia

for the Mutriku wave climate (14 sea states)

o Further details can be found in [1, 2]
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Generator feedba

ck control law

Biradial turbine Wells turbine
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Biradial turbine power output sensitivity to “a” and “b"
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Wells turbine power output sensitivity to “a" and “b”
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Comparison time-averaged turbine output power and rotational speed

Biradial turbine Wells turbine
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PART 2 - Optimal control of the turbine High-Speed Stop Valve (Latching)

@ The HSSV valve of a biradial turbine with 0.5 m rotor diameter
o Latching with the HSSV will be tested at Mutriku, June-July 2017 (OPERA)

o HSSV will operate as safety valve in Oceantec MARMOK-A-5, October 2017
(OPERA). Buoy: 5m diameter, 42m in length and 80 tonnes weight.
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Latching control and air compressibility

@ OWGs vs oscillating body WECs

o Latching on OWCs not so effective as in the case of an oscillating-body
WECs

o air compressibility has a spring effect

o closing the HSSV does not stop the relative motion between the OWC
and buoy

o Decreases the forces resulting from latching in comparison with solid-body
breaking

o the valve surface area subject to the chamber pressure is a small
fraction of the area of the OWC free surface

e no impact forces - air compressibility spring effect

o Removes the constraint of latching having to coincide with an instant of zero
relative velocity between the floater and the OWC
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Changes to the mathematical model of Mutriku

@ Spar-buoy OWC - two body system constrained to oscillate in heave
Buoy: (m; + A7) % + A% % = —puwgSix1 — R — Rz + Fai +Patm S2P°
OWC: A% X1 + (my 4+ AR) X2 = —puwgSaxo —Ro1 — Ra +Fa2 —Patm S2 p°

—_———— T T —]
buoyancy radiation diffraction  air chamber

@ HSSV simulation requires a new definition of ¥
5 P* Pat
W = Llly =u m
where u € {0,1} is the discrete control (close/open)
@ System of equations written as a lst-order ODE
x = f(t,x,u) (1)

x are called the states
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Optimal control and the Pontriagyn Maximum Principle

o Optimal control

o Maximization of a performance index based on the control u of the HSSV

max<LT £ (x,u) dt)

Prur (t,%,
o Example: £ (x,u) = — b(tX,u)

Patm Q3. d°

o Using the Pontriagyn Maximum Principle (PMP) the optimal problem is

recast as
T T¢
max J L(x,u)dt — J AT (x—f(t,x,u))dt
0 0
performance index constrained to system dynamics

o A’s are called adjoint variables
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Solution of the Pontriagyn Maximum Principle

@ The PMP shows that:

o along the optimal control path (x,u) the Hamiltonian function H
H (t,x,u,A) = AT f(t,x,u) + L (x,u),

is maximum for the optimal input u subjected to:

x = f(t,x,u) .
° = forward solution
x(0) = xq
A=V f(tx,u) A —VeL(x, u)" _
° = backward solution
A(T:) =0

for t € [O,Tf]

o non-causal control - F4(t) required to compute f for t € [0, T¢]

o For complete details see the two classical books of Luenberger [5] and
Bryson & Ho [6]
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Receding Horizon control in a real-time framework
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Hardware-in-the-loop tests at Tecnalia test rig

grid frequency variator back-to-back converter grid
400V / 50Hz & controller & controller 400V / 50Hz

O=VAA

motor generator
flywheel

] generator torque, T, = aQ®

rotational speed, Q| [ motor (turbine) torque, T; ' PLC

@ | Real time simulaion

Hardware in the loop simulation (prototype scale)

! ! Test rig (model scale)
)
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Hardware-in-the-loop tests at Tecnalia test rig
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Hardware-in-the-loop tests at Tecnalia test rig
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Lessons learned from the Tecnalia hardware-in-the-loop tests

o To improve stability, all state variables must have the same order of magnitude

The algorithm sometimes opens/closes the HSSV intermittently during short
periods (less than 1.5 seconds)

The discrete nature of the numerical solution of the PMP problem implies a
2nd-order accuracy

@ A new challenge in the HSSV control

o The sub-optimal problem of open/closing the HSSV only at the end of
each (non-infinitesimal) time step, At =0.1~0.2s

o No solution found in the searched bibliography!

o We start the quest for a new solution method...
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Discontinuous Galerkin Method

@ The computational domain is discretized in small time-elements
e tey te;%—2
/R e

[ oo | & | 4 ]
0 T S0 8 O -

where
o State, adjoint and control variables approximated by a set of Legendre
polynomials, p;(t) such that x = ZJ- pj(t)X; in each time element

o The numerical solution is continuous within the time elements and
allowed to be discontinuous across element boundaries

@ Solution of the sub-optimal control problem - compute u that maximizes the
Hamiltonian J in a integral sense

tet1
max J H(t,x,u,A)dt
ue{0,1} te
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Discontinuous Galerkin Method

@ In the DG Finite Element Method, the original problem
x—f(t,x,u) =0

is replaced by a weak formulation

[ v (%—f) dt + vy(te) ban(£5) — x(£)] =0

state equations weakly enforced BC

vy, is the so-called test function in the FEM framework

o Applying an affine transformation from t € I, to T € [—1,1]
1 s A 1 N
1 dt 2 1

we write (2) as linear system AX, = b(t,x,u) in each element
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Discontinuous Galerkin Method

o To improve the convergence rate, a regularization term was introduced
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Discontinuous Galerkin Method
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Major conclusions

o Receding horizon optimal latching algorithm can be used to improve the OWC
spar-buoy capture width

o Receding horizon time interval between 10 to 24s

@ The Discontinuous-Galerkin solves the HSSV open/closing intermittency problem
of the discrete optimal control

o Probably the greatest advantage of the OWC technology

o Simple control of the available power to PTO system by using a HSSV

o HSSV can be used for latching and control of the available power to the
turbine and generator

@ The proposed Discontinuous-Galerkin method is an efficient alternative to the
well know Pseudo-Spectral Methods

o High-order accuracy, mesh and polynomial (h-p) refinement, local nature of
the solution, simple parallelization (real-time applications)
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